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Based on the time-dependent Gutzwiller approximation we study the possibility that the diagonal incom-
mensurate spin scattering in strongly underdoped lanthanum cuprates originates from antiferromagnetic do-
main walls �stripes�. Calculation of the dynamic spin response for stripes in the diagonal phase yields the
characteristic hour glass dispersion with the crossing of low-energy Goldstone and high-energy branches at a
characteristic energy Ecross at the antiferromagnetic wave vector QAF. The high-energy part is close to the
parent antiferromagnet. Our results suggest that inelastic neutron-scattering experiments on strongly under-
doped lanthanum cuprates can be understood as due to a spatial mixture of bond-centered and site-centered
stripe configurations with substantial disorder.
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The low-energy spin response of many high-Tc supercon-
ductors is characterized by magnetic fluctuations which are
incommensurate with respect to the antiferromagnetic �AF�
order �for a review see Ref. 1�. Since in co-doped �with Eu,
Nd, or Ba� lanthanum cuprates �LSCO� an accompanying
charge-density wave has been detected �e.g., Ref. 2�, this
kind of scattering is usually attributed to the formation of
stripe textures where the doped holes segregate into quasi-
one-dimensional “rivers of charge” which simultaneously
constitute domain walls for the AF order parameter.

The similarity of low-energy inelastic neutron-scattering
�INS� data between co-doped and non-co-doped materials
supports the picture of a fluctuating and �or� glassy stripe
phase in LSCO. From these experiments it turns out that
above doping nh=0.055 the stripes are oriented along the
Cu-O bond direction �“vertical stripes”� and the incommen-
surability � �defined as the deviation of the magnetic peak
from QAF� linearly increases up to nh�1 /8.3 Above nh
�1 /8, � stays essentially constant but the intensity of the
low-energy spin fluctuations decreases and vanishes at the
same concentration where superconductivity disappears in
the overdoped regime, thus, suggesting an intimate relation
between both phenomena.4

Upon lowering the doping below nh�0.055 the incom-
mensurability � rotates by 45° �Refs. 5–8� to the diagonal
direction. Exactly at the same point superconductivity disap-
pears; therefore to understand the nature of this diagonal
phase is a key issue in the field.

The orthorhombic lattice distortion allows one to con-
clude that the elastic diagonal magnetic scattering is one-
dimensional with the associated modulation along the ortho-
rhombic b� axis. When � is measured in units of reciprocal
tetragonal lattice units in both the vertical and diagonal
phase, it turns out that the magnitude of the incommensura-
bility numerically coincides across the rotation leading to a
linear relation �=x. Upon approaching the border of the AF
phase at nh=0.02 the incommensurability approaches �=x,9

where � is measured in units of reciprocal orthorhombic lat-
tice units, thus �=�2�.

In this Brief Report we present computations of the in-
commensurability and the dynamic response of diagonal

stripes based on the Gutzwiller approximation and its dy-
namical extension and compare with our previous computa-
tions for vertical stripes and recent INS data.10 Our results
suggest that in the spin-glass phase incommensurate scatter-
ing is due to a disordered spatial mixture of bond-centered
and site-centered diagonal stripe configurations. Calculations
are based on the one-band Hubbard model �on-site repulsion
U� with hopping restricted to nearest ��t� and next-nearest
��t�� neighbors. Applying the unrestricted Gutzwiller ap-
proximation �GA� as in Ref. 11 static charge and spin tex-
tures are obtained by minimizing the corresponding energy
functional. It has been shown12 that for small clusters the
charge distribution and energy obtained from this variational
approach is in good agreement with density matrix renormal-
ization group calculations,13 in contrast to the more conven-
tional unrestricted Hartree-Fock approximation. In the
present context it is, however, important that the GA can be
implemented on sufficiently large clusters in order to obtain
the desired information in momentum space.

Gaussian fluctuations are computed on top of the inhomo-
geneous solutions within the time-dependent GA �Refs. 14
and 15� �TDGA�. This scheme allows for the calculation of
random-phase-approximation �RPA� fluctuations in a similar
manner as the traditional Hartree-Fock �HF� plus RPA. At
the same time it starts from a solution which incorporates
correlations already at mean-field level.

Parameters are U / t=7.5, t� / t=−0.2, and t=340 meV.16

In previous papers we have shown that our approach can
reproduce both the magnon excitations of undoped LCO
�Ref. 16� as revealed by neutron scattering17 and the doping-
dependent incommensurability in the vertical stripe
phase.12,18 In addition, the formalism leads to quantitative
agreement with the dispersion of spin excitations in LBCO
�Refs. 16, 19, and 20� and can reproduce the doping depen-
dence of the optical conductivity.21

Figure 1 shows the charge and magnetization profile for
the diagonal stripe structures we have obtained as stable
saddle-point solutions within the GA. The first is a site cen-
tered diagonal �DSC� stripe where the doped holes are con-
fined to nonmagnetic sites which simultaneously constitute
the antiphase boundary for the AF order parameter.
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The second stable texture �Fig. 1, right panel� can be con-
sidered as the diagonal counterpart to vertical bond-centered
�VBC� stripes. However, due to the diagonal orientation the
stripe acquires a net ferromagnetic moment. Moreover, the
magnetization points in the same direction �i.e., the whole
layer becomes ferromagnetic� when the BC stripes are sepa-
rated by an odd number of lattice constants in x �or y� direc-
tion. They can be considered as the smallest “staircase” vari-
ant as discussed by Granath.22 More extended staircase
structures can in principle not be excluded. However, due to
the associated frustration at the corners of the staircase the
ground state would display spin canting, which in our ap-
proach reflects as an instability in the transverse magnetic
excitations.

The approximate linear relation between incommensura-
bility and filling at low doping3,5–8 implies that isolated
stripes are self-bounded linear aggregations of holes with a
well-defined number of holes per Cu along the stripe given
by �opt�nh /�. Indeed as for vertical stripes12,18 we find an
optimum filling; however, an important difference here is
that �opt depends substantially on the texture. DSCs are in-
sulating �the Fermi level falls in a gap� with �opt�1, thus
��nh. Diagonal BC �DBC� stripes are metallic and have an
optimum filling at �opt�0.75, implying ��nh.23

While DBC stripes are practically �accidentally� degener-
ate in energy with low doping VBC, the energy of the DSC
texture is �0.02t per hole above.23 We believe that these
small energy differences are not significant given the sim-
plicity of the model. A precise determination of the relative
stability of the different phases would require at least mul-
tiorbital effects, inclusion of both long-range Coulomb inter-
actions and coupling of the holes to the tilts of the CuO4
octahedra. The latter have been shown to play a major role in
the stabilization of vertical vs diagonal stripes.24 On the other
hand we believe that results within one phase are much more
reliable. For example we have checked that the different op-
timum � for DSC and DBC stripes for a three-band Hamil-
tonian do not differ from those found for the one-band model
so that we consider this as a robust feature of our calculation.

In the present case the more important extrinsic effect is
disorder. For vertical stripes the correlation length can reach

150atetra or around 20 times the magnetic stripe periodicity,
while for diagonal stripes the correlation is of the same order
or even smaller than the periodicity.6 This should be kept in
mind while comparing with our results which correspond to
perfectly ordered stripes arrays. Figure 2 compares the dop-
ing dependence of the magnetic incommensurability � in the
diagonal phase as seen in elastic neutron-scattering
experiments,6,7,9,25 together with the predicted dependence
for DSC and DBC stripes. For non-co-doped samples the
experimental incommensurability is in between the theoreti-
cal ones for DBC and DSC, with a stronger tendency for
DBC close to the metal-insulator transition which shifts to
DSC at low doping. An interesting effect occurs upon sub-
stitution of Cu2+ by nonmagnetic Zn2+ which has a filled
3d10 shell.25 This should favor DSC stripes which are forced
to have zero magnetic moments in the core, and indeed the
incommensurability shifts to the computed DSC line �cf. Fig.
2� in accord with our expectation. All this suggests that the
system is made of a disordered spatial mixture of DSC and
DBC configurations with a gradual shift from the former to
the latter as doping is increased.

In the following we discuss the spin excitations for dop-
ing nh=0.05. For DSC stripes we have �=0.05 �i.e., charged
stripes separated by 20a along the x or y direction� and for
DBC stripes with �=0.071 �i.e., separated by 14a along x or
y direction�. Figure 3 displays I�� ,q���S�� ,q� with
S�� ,q� the transverse dynamical structure factor relevant for
magnetic neutron-scattering experiments. The � factor
makes visible the high-energy features which would appear
much faint in the experimentally accessible S�� ,q�. We
show the dispersions of magnetic excitations perpendicular
�left panel� and parallel �right panel� to the stripe direction.

Parallel to the stripe the dispersion is dominated by modes
very similar to the ones of the undoped AF, as could be
expected from the real-space structure. Due to the large unit
cell and the small extension of the reduced Brillouin zone in
the perpendicular direction excitations consist of a large
number of folded bands. These are generally silent when
plotted in the extended Brillouin zone but acquire a large
spectral weight in proximity to the modes of the parent an-
tiferromagnet �shown with a dashed line�, giving rise to the
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FIG. 1. �Color online� Charge density and magnetization for
site-centered and bond-centered diagonal stripes. The densities are
plotted along an horizontal scan, indicated by the dashed arrow.
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FIG. 2. �Color online� Doping dependence of the magnetic in-
commensurability � in the diagonal phase as deduced from the ref-
erenced elastic neutron-scattering experiments. Solid and dashed
lines are the predicted dependence for DSC and DBC stripes,
respectively.
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horizontal segments in the right panel. This is analogous to
the effect reported in photoemission where spectral weight is
maximized when intersecting the free-electron dispersion
relation.22 This clarifies the evolution of the spectrum at very
low doping: As doping decreases the dynamical structure
factor gradually tends to the one of the antiferromagnet by
increasing the number of bands and modulating the spectral
weight.

At low energies the spectrum is determined by the Gold-
stone excitations belonging to an inward �i.e., in the direction
of �� ,��� and an outward dispersing branch. For DSC
stripes upon increasing energy the inwards dispersing branch
dominates in weight and reaches the AF wave vector QAF at
Ecross�35 meV, where it connects to the dispersion along
the stripe. In contrast to the vertical excitations16 the saddle-
point structure is very small and barely resolved due to
finite-size effects. For DBC stripes a small gap appears be-
tween the Goldstone mode and the saddle point in strong
resemblance with linear spin-wave theory �LSWT� results by
Carlson et al.26 There it was pointed out that for even spaced
diagonal stripes �as in the present case� QAF becomes a
reciprocal-lattice vector with a downturn of the acoustic
branch. Interestingly for DSC stripes in our itinerant ap-
proach the analogous gap is not resolved, resulting in prac-
tice in a continuous dispersion of the Goldstone mode up to
the saddle with energy Ecross. We expect that in both cases
the gap will be washed out by disorder and damping effects.

In Fig. 4 we show cuts of the dispersion for the DSC
stripes. At low frequencies the excitations at the two incom-
mensurate wave vectors carry the dominant weight, which
start to form spin-wave cones upon increasing energy. The
cones merge at Ecross=0.12t where it is apparent that the
weight of the cones is strongly anisotropic and enhanced
close to QAF. Similar to our previous findings for vertical
stripes16,19 the response well above Ecross becomes two-0.3
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dimensional, forming a ring shaped pattern around QAF.
Figure 5 reports the doping dependence of Ecross for both

SC and BC textures in the vertical and diagonal phases com-
pared to INS data.10,27–29 Since for the undoped system one
recovers the spin excitations of the AF, Ecross extrapolates
down to zero frequency at nh=0 �dotted line� for both DSC
and DBC stripes. Due to the large supercells involved we
could not access the doping regime nh�0.04.

Below x=0.08 our computations overestimate Ecross. One
should keep in mind that we are working with a fixed set of
parameters determined in Ref. 16. For example reduction in
t improves considerable the agreement but spoils the fitting
of the undoped dispersion relation. Due to the complexity of
the computations we have not performed intense optimiza-
tion of the parameter set, so it may be that for different
choices of U and t� and t we could also achieve a better fit of
the overall doping dependence. However, we believe the
main reason for the disagreement is the strong disorder char-
acter of the stripes in this doping range. We have performed
linear spin-wave theory calculation of DBC stripes �nearest-
neighbor exchange between antiferromagnetic ��J� and fer-
romagnetic ��J��� bonds� similar to Ref. 26 but including
disorder by randomly flipping the spins �probability p�. The
inset to Fig. 5 demonstrates that already a small amount of
disorder leads to a softening and broadening of Ecross. Indeed
quite generally one expects a softening of excitations as the

magnetic configuration becomes more disordered. This be-
comes evident in the Ising limit, comparing the dispersion
relation of an Ising ferromagnet �or AF� with that of an Ising
spin glass in which the exchange constant J is the same but
the sign is random. In the ordered case the spin-flip excita-
tion energy is 2zJ with z the coordination, whereas in the
glassy case it is smaller in average due to frustrated configu-
rations. Based on a model of coupled spin-1/2 ladders the
softening of magnetic excitations for disordered stripes has
also been shown in Ref. 30.

To conclude, we have shown that the doping dependence
of the incommensurability of diagonal magnetic scattering is
compatible with a spatial mixture of DSC and DBC stripes.
We find excitations that are qualitatively in accord with
experiment10 but too high in energy. We attribute the differ-
ence to the much more disordered nature of diagonal incom-
mensurate scattering. Our intermediate coupling approach
predicts a quasi-two-dimensional high-energy response in the
diagonal phase of LSCO which displays a one-dimensional
static response along the orthorhombic b� axis. Our compu-
tations also clarify how the dispersion relation converges to
the one of the AF as doping is decreased.
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